财富管理“智变”
“提示:客户情绪为焦虑、失望,正在关联客户持仓、生成推荐话术。”这是智能投顾场景中最新落地的AI大模型应用,能够准确捕捉客户的情绪,并通过更快速、全面的生成内容帮助投资顾问完成工作。
日前,已有多家财富管理机构、金融科技公司基于大模型技术,推出了AI交易员、AI金融助理、AI智能投研等相关服务或产品。
(资料图片仅供参考)
多位业内人士向《中国经营报》记者表示,在AI大模型的技术加持下,过去“海量非结构化的多模态数据”难以处理的难点得以解决。在应用方面,未来如何将技术渗透进更加符合用户需求的场景,以及通过金融数据对大模型进一步精调,将是行业接下来发力的方向。另外,新技术的应用也带来相应的伦理问题。比如,一旦出现失误导致客户出现资产损失,相应的责任由谁来承担等,也需要多方面来共同探索解决。
快速+全面+生动
近日,关于大模型技术在财富管理的应用动态层出不穷。比如,恒生电子及旗下子公司恒生聚源发布基于大语言模型的金融智能助手、智能投研平台;盈米基金旗下投顾品牌——“且慢”联合合作伙伴探索AI智能投顾。此外,还有多家金融机构推出AI数字员工等。
那么,大模型技术究竟给投研、投顾带来哪些新的可能?理财魔方创始人兼CEO袁雨来告诉记者,对于过去难以处理的海量非结构化的多模态数据,在大模型的支持下可以进行更全面的信息覆盖,从而得到更有效的分析结果,以此提升服务效果和能力,投研方面的宏观分析、策略研究、资产筛选、资产配置等环节都将受益。
具体到产品上,恒生聚源副总经理白雪向记者表示,目前恒生聚源的智能投研平台WarrenQ基于大模型技术开发了两款新的智能应用。一款是WarrenQ-Chat,即利用大模型叠加搜索和金融数据库,可以轻松实现“语控万数”(即所有操作都可以用对话实现),并解决通用大模型无法回答的金融专业问题。它基于海量的资讯内容进行训练,每一句生成的话都能支持文本溯源,确保消息出处可追溯,还可以生成金融专业报表。另一款是金融文档挖掘产品ChatMiner,它基于大模型和向量数据库构建,用户可以指定文档进行干货提炼、要点挖掘、推荐问题等,从而实现快速定位。
盈米基金高级技术总监吴珂皓表示,在投顾场景中,盈米基金利用大语言模型、向量数据库、本地知识库来构建超级投顾助理,帮助客服、投顾人员高效回答用户的问题。相比过去,这种高效一方面体现在更快,另一方面则体现在更加全面。与此同时,大语言模型的内容生成技术也被用来生成每日的资讯早晚报,与客户交流当天的市场动态。
除了响应的速度与内容全面之外,记者在试用恒生金融智能助手——“光子”后也了解到,投顾场景中,经过大模型技术加持的投顾内容推荐将更准确地识别用户在交流时的情绪。比如,当用户以普通口吻询问某股票的股价时,光子将向投资顾问提示客户的意图为了解适合自己的金融产品,并提示该用户以往较关注产品收益区间,以及关注的产品类别、交易频次等。同时,光子能直接将关联的股票信息、财报、研报推送至页面。投资顾问可以自行选择需要的生成内容,发送给客户。
此外,当用户带有情绪提问时,如“你上次推荐的产品前期涨得还行,最近怎么跌回去了,还能不能行啊?”光子则将用户的情绪识别为“负面”“失望”“焦虑”,并关联用户的持仓情况,且形成推荐话术,如“作为投资顾问,我们了解您的担忧。市场波动是正常的,产品的价值要看长期表现。我们建议您耐心持有,不要盲目跟风操作。如果有任何疑问或帮助,随时欢迎联系我们”。
“人机结合”推进落地
基于AI大模型在财富管理领域的表现,业内在感叹的同时也不乏疑虑:技术的应用是否意味着财富管理的中后台员工可能被完全替代?同时,财富管理行业要求从业人员取得相应的从业资格证书,而从AI模型的角度该如何判断其从业水平?
对此,袁雨来向记者表示,AI大模型在投研、投顾领域的应用,已经可以完全替代部分中后台员工了,特别是经过大量金融数据微调之后的大模型,在专业能力和综合能力上,确实可以超过大部分初级工作员工。同时,对于AI交易员等技术“员工”,归根结底依旧是程序,是由程序员构建的,只要遵循现有的对于金融行业技术研发相关的管理就可以。
吴珂皓谈道,“在部分行业,AIGC(生成式人工智能)确实可以完全替代真人,比如在直播、电商行业,数字主持人或数字模特都可以替代真人来完成直播或产品宣传。不过,财富管理行业有其特殊性,目前这种替代还不太可能,特别是在前台领域。但是,在中后台的部分领域,是可以部分替代的。AI大模型在财富管理行业可以设置一些必要的‘考试’来评定AI模型的水平,但最终还是要由人来操作和管理。”
由此,也引申出AI大模型面临的伦理问题,比如一旦出现失误导致客户出现资产损失,相应的责任由谁来承担等。关于模型水平的认定方法,吴珂皓进一步表示,一方面可以对模型进行终端测试,设计相应标准测试集,模型上岗前必须通过标准测试集的考试;另一方面,模型训练使用的数据可以进行认定和审核。
恒生电子CTO乐识非告诉记者,AI大模型依然处于应用的初级阶段,在提供便利的同时,依然会有知识幻觉等一些缺点问题。现阶段,建议以“人机结合”的方式去推进应用落地。比如在投顾场景中,投资顾问需要在针对投资者的持仓进行实时跟进并检测市场波动的情况下及时给出调仓建议,针对投资者当前持仓进行深度检视,类似的工作决定了客户留存的意愿。AI大模型可以提供初始建议,但最终仍需要人工投顾把一道关,进行处理结果把关和客户接触的环节,再给到终端客户,这是比较推荐的应用方式。因此,AI技术并不是完全替代人工,而是以一种新的人机结合方式提供服务。
数据、场景为王
记者在试用多个通用与垂直大模型的过程中也了解到,目前大模型输出的结果仍存在无法精准理解用户意图、数据时间把握不准的情况。有时为了获取正确输出结果,仍然需要多次生成内容。由此可见,目前的金融领域大模型仍然有很长的路要走。
那么,未来用户在使用大模型时还有可能获得哪些新的体验?机构将重点投入哪些资源,来不断完善与深入大模型技术在金融领域的发展?
乐识非表示,随着大模型的不断成熟,人机交互的方式将改变为语控万数、语控万物。所有的操作都可以用对话实现,用户可以以自然语言对话的方式来取代各种复杂的交互,信息化时代的菜单、网络化时代的按钮应该都不再需要。为此,恒生电子将在两个方面加强投入。一是加强恒生电子金融行业大模型LightGPT,通过金融领域知识数据的精调,提升LightGPT在金融领域的准确理解能力。二是加强金融领域垂类产品化。基于恒生电子对于金融业务和金融场景的深刻理解和工程化能力,深入金融业务流程,打造专业面向投研、投顾、营销、客服、运营、合规等金融场景的人工智能解决方案及智能产品。
吴珂皓则表示,对于金融企业而言,除了模型本身的技术投入以外,更多的投入将会是在数据和场景上。“借用最近AI投资圈里流行的一句话:‘场景优先、数据为王。’在场景上持续投入,模型本身不是用户需要的,用户需要的还是更加符合其预期收益和风险级别的产品。所以,如何将AI模型的能力渗透进入场景是一门值得大家深度投入的事情。光有模型没有场景,就会陷入拿着锤子找钉子的尴尬地步。”吴珂皓还指出,数据将会是未来金融机构本地大模型差异化竞争所在,只有模型学习了更多、更好的数据后,大模型的真正能力才会得以发挥。
袁雨来也告诉记者,未来理财魔方将继续在全市场数据的收集、模型的进一步提升、构建更多符合客户使用便利性和效果的应用场景上下功夫,让智能财富管理服务变得简单便捷,风险控制得更好,长期收益更稳定,更符合客户个性化的需求。
(文章来源:中国经营网)
标签:
推荐文章
- 人机对话技术升级 之江实验室获2021年度浙江省科技进步二等奖
- 研究人员最新发现 单个细胞可同时处理成百上千个信号
- 陆军第73集团军某旅 创新升级模拟训练器材
- 长期暴露在光照下性能退化 科学家发现钙钛矿太阳能电池最大缺陷
- 宁夏启动双百科技支撑行动 构建高水平产业创新体系
- 陆军炮兵防空兵学院 毕业学员综合战术演习现地备课工作圆满完成
- 国内首颗以茶叶冠名遥感卫星 安溪铁观音一号发射成功
- 区域特色产业转型升级 四川屏山以“3+”模式推进科技创新工作
- 激发创新动能促进产业发展 无锡滨湖走出产业转型“绿色”路
- 绥化全域低风险!黑龙江绥化北林区一地调整为低风险
- 走访抗美援朝纪念馆:长津湖的寒冷,与战斗一样残酷
- 节后第一天北京白天晴或多云利于出行 夜间起秋雨或再上线
- 走近网瘾少年们:他们沉迷网络的病根何在?
- “双减”后首个长假:亲子游、研学游需求集中释放
- 获2021年诺奖的蛋白,结构由中国学者率先解析
- 他从一窍不通的“门外汉”,到重装空投“兵专家”
- 升旗、巡岛、护航标、写日志,他们一生守护一座岛
- 中国故事丨“沉浸式”盘点今年的教育好声音!
- 农业农村部:确保秋粮丰收到手、明年夏季粮油播种
- “双减”出台两个月,组合拳如何直击减负难点?
- 《山海情》里“凌教授”的巨菌草丰收啦
- 且看新疆展新颜
- 天山脚下,触摸丝路发展新脉动
- 160万骑手疑似“被个体户”?平台不能当甩手掌柜
- 网游新政下,未成年人防沉迷的“主战场”在哪?
- “辱华车贴”商家及客服被行拘,处罚要不放过每一环
- 沙害是自然界的恶魔,而他是荒沙碱滩的征服者
- 面对婚姻,“互联网世代”的年轻人在忧虑什么?
- IP类城市缘何吸引力强?玩法创新带动游客年轻化
- 国庆主题花坛持续展摆至重阳节
- 都市小资还是潮流乐享?花草茶市场呈爆发性增长
- 从1.3万元降到700元,起诉书揭秘心脏支架“玄机”
- 北京国庆7天接待游客超861万人次 冬奥线路受青睐
- 陈毅元帅长子忆父亲叮嘱:你们自己学习要好,就可以做很多事儿
- 报告显示:这个国庆假期,粤川浙桂赣旅游热度最高
- 中国科技人才大数据:广东总量第一,“北上”这类人才多
- 嘉陵江出现有记录以来最强秋汛
- 全国模范法官周淑琴:为乡村群众点燃法治明灯
- 线上教学模式被盯上,网络付费刷课形成灰色产业链
- 云南保山:170公里边境线,4000余人日夜值守
- 警方查处故宫周边各类违法人员12人
- 农业农村部:确保秋粮丰收到手、明年夏季粮油播种
- 受南海热带低压影响 海南海口三港预计停运将持续到10日白天
- 多地网友投诉遭遇旅游消费骗局,呼吁有关部门严查乱象
- 神经科学“罗塞塔石碑”来了:迄今为止最完整的大脑细胞图谱
- 汾河新绛段发生决口
- 陕西支援14省份采暖季保供用煤3900万吨
- 这场红色故事“云比拼”,穿越时空为我们指引方向
- 受琼州海峡封航影响 10月7日、8日进出海南岛旅客列车停运
- 辽宁省工信厅发布10月8日电力缺口橙色预警
- 广州10月8日至20日对所有从省外来(返)穗人员实施核酸检测
- 假期怎么过得这么快?国庆5.15亿人次出游,你咋过的?
- 国庆假期全国道路交通总体安全平稳有序
- 哈尔滨市南岗区爱达88小区将调整为低风险地区
- 新疆霍尔果斯市2例无症状感染者新冠病毒均为德尔塔变异株
- 百闻不如一见——北京大学留学生参访新疆
- 看,生机勃勃的中国
- 国庆假期中国预计发送旅客4.03亿人次
- 新疆兵团可克达拉市:195名密接者已全部隔离医学观察
- 山西平遥消防4天29次救援:拖着腿走路也要完成任务
- 国庆假期北京接待游客861.1万人次
- 冷空气自西向东影响中国大部地区 气温将下降4℃至6℃
- 新疆哈密市巴里坤县发生4.3级地震 震源深度9千米
- 国庆假期中国国内旅游出游5.15亿人次
- 公安部交管局:国庆假期日均出动警力18万余人次,5位交警辅警牺牲
- 受南海热带低压影响广东将暂别高温天气
- “数说”杭州无障碍改造:触摸城市“爱的厚度”
- 新疆霍尔果斯无症状感染者新冠病毒属德尔塔变异株 未发现高度同源的基因组序列
- 新疆伊犁州:妥善做好滞留旅客安置返回工作
- 国庆假期广西累计接待游客逾3611万人次 实现旅游消费272.41亿元
- 2021年MAGIC3上海市青少年三对三超级篮球赛落幕
- 新疆兵团第四师可克达拉市1名无症状感染者为餐饮从业人员
- 哥伦比亚遇上广州:洋茶人“云上”喫茶 传播中国茶“味道”
- 厦门同安区四区域调整为低风险 全市无中高风险地区
- 直径2米“面气球”亮相 山西首届“寿阳味道”美食大赛启幕
- 世界第一埋深高速公路隧道大峡谷隧道出口端斜井掘进完成
- 浙南沿海村村发展有妙招 搭乘共富快车打造“海上花园”
- 新疆霍尔果斯两例无症状感染者新冠病毒均属德尔塔变异株
- 南沙港铁路国庆假期不停工 力争今年年底开通
- 添加陌生人为好友 内蒙古两女子被骗126万
- 中国国庆假期出行热:数字改变“关键小事”
- 水能载物亦能“生金” 浙江遂昌山村以水为媒奔共富
- 铁路人国庆雨中巡查排险记:一身雨衣、一把铁锹保安全畅通
- 铁路迎返程高峰 西安局集团公司加开79趟高铁列车
- 受热带低压影响 琼州海峡北岸等待过海车辆排长龙
- 哈尔滨市学校有序恢复线下教学
- 哈尔滨一地风险等级调整为低风险
- 从进“培训班”到看《长津湖》
- 安徽黄山国庆假期迎客12万余人 旅游市场稳步复苏
- 山西解除持续近90小时的暴雨四级应急响应
- 科学拦峰错峰削峰 嘉陵江洪水过境重庆中心城区“有惊无险”
- 粤高速大湾区路段假期车流集中 跨珠江口通道尤甚
- 千年街区“非遗”风催热国庆假期本地游
- “颜值担当”里的中国,映照“万物和谐”新气象
X 关闭
资讯
X 关闭
行业动态
-
百济神州(06160):2991.44万股限售股将于12月15日上市流通|热点聚焦
- 百济神州(06160):2991.44万股限售股将于12月15日上市流通|热点聚焦
- Keybanc:维持GitLab(GTLB.US)增持评级
- 河南设立首批实验室基地 第一批11家省实验室基地授牌
- 法定节假日加班 “打工人”能否薪酬翻倍或拒绝加班?
- 游客扮“宇航员”拍大片 这个火山地质公园“火了”
- 北京最忙铁道口实现立交通车
- 新中国考古学科培养的第一位博士、72岁北大教授王迅逝世
- 特写|疫情下的厦门,旅游业如何在夹缝中求生存
- 丈夫涉嫌酒驾被交警拦下,四川一女子袭击辅警获刑
- 话剧《直播开国大典》:重现新中国伟大历史时刻